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the first (we) time box. In calculating 0, the spectra in Using only the data from channels 78-120, NJ is 
Table I were summed only to channel 68, thus omitting given by 
the we peak. Assuming that the fraction of accidentals ŷ / = jy ; ~ M L ( ) N G ' , (B5) 
was strictly proportional to the width of the time gate, 
we have Now from the data in Table I we find 
a n d tfiW=tfwNG-ACC, (B2) e=0.952, 0=0.113, 

Df=D/(l+0.97S(ACC/NjjO^Q)) • (B3) l.O67€£>'-0i\TLoNG'= 16404-8130=8274. 

Similarly, in the we box, Taking g= 1.091 and / = 1.037, we obtain 

Nirii/^N1r(ie-0.978(Df/NLo^G)ACC. (B4) R= (1.33±0.17)X10~4. 
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We have extended the pion-pion calculation of Smith and Uretsky by including the third-order perturba
tion theoretic terms for the discontinuity across the left-hand cut in the complex energy plane. The right-
hand cut is still given by elastic unitarity. Numerical calculations for the S- and P-wave amplitudes show 
that the S waves are not much different than they were in the second-order calculation. The P-wave ampli
tude is substantially modified, and the trends are such as to make it plausible that a fourth-order calculation 
could reproduce the p resonance. I t was also interesting to find that the P-wave interaction can be strongly 
attractive (to this order) only if the S-wave interactions are repulsive. 

I. INTRODUCTION 

IN an attempt to formulate a theory of pion-pion 
scattering it was shown, in an earlier paper,1 how 

one could define a sort of generalized potential to de
scribe the w-w interaction and then make use of 
dispersion-theoretic methods to obtain the scattering 
from this "potential." The generalized potential is 
calculated by means of field-theoretic perturbation 
theory as a power-series expansion in a "renormalized" 
coupling constant X that specifies the strength of a X<£4 

interaction among the pions. In paper I the potential 
was calculated to order X2 and the solutions were 
described and discussed. The present paper is devoted 
to a discussion of the consequences of including the X3 

term in the "potential." We hope to be able to discuss 
the fourth-order corrections in the near future. 

It seems appropriate to recount the conditions that 
should be fulfilled by the calculations we are doing in 
order that they may correspond to a sensible theory. 
Relativistic invariance and unitarity of the scattering 
amplitude require no discussion, of course, since these 
are built into the computational method. One also 
desires to impose crossing symmetry, and it was 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

f Permanent address: Department of Physics, Wayne State 
University, Detroit, Michigan. 

1 K. Smith and J. L. Uretsky, Phys. Rev. 131, 861 (1963). This 
will be referred to as paper I. 

pointed out in I that this cannot be precisely defined in 
a calculation such as ours of partial-wave amplitudes. 
It was found that an approximate crossing symmetry 
was quite well maintained for not too large values of 
the coupling constant X. 

One other important condition having to do with the 
convergence of the method was given passing mention 
in paper I. The hope was expressed there that the effect 
of including higher order terms in the potential would 
correspond to working one's way "outward" in both 
angular momentum I and energy E. This notion is 
expressed graphically in Fig. 1 which is a sketch of the 
l—E plane. There is a point in this plane (labeled "A") 
where the lowest order expression (proportional to X) 
for the scattering amplitude is exact. Around this must 
be a zone (labeled "B") where the second-order calcula
tion contained in paper I is a good approximation. In 

FIG. 1. Sketch of the ex
pected regions of applicability 
of the different orders of 
approximation. For explana
tion see text. The units are, 
of course, arbitrary. 
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zone "C" the second-order results will be modified 
substantially by the third-order calculation but not by 
higher orders, and so on. Clearly, the size of the zones 
will decrease with increasing X; and it is likely that for 
some sufficiently large value of X, the perturbation 
approach will make no sense whatever. It is the major 
purpose of the present paper to see how well this 
convergence condition is satisfied up to third order. 

II. PROCEDURE 

A perturbation expansion of the scattering amplitudes 
for isotopic spins 0, 1, and 2 is obtained in the manner 
described in Appendix A of I. The expansion is termi
nated at the third order in the coupling constant X, and 
5- and P-wave projections are then made. The resultant 
perturbation amplitudes may be considered as functions 
of a complex variable v, the square^of the barycentric 
momentum of one of the incident pions. One finds the 
amplitudes to be analytic functions of v in a plane cut 
along the two segments 

0^*><oo and — ooO<J— 1, 

in units in which h, c, and the pion mass are all equal to 
unity. The calculated discontinuity across the "right-
hand" cut is then replaced by the elastic unitarity 
condition (there is no inelastic contribution to the 
elastic amplitude in third order). This leads to nonlinear 
integral equations. These are solved by the familiar 
N/D techniques.2 The resultant N/D solutions are then 
fed back into the original nonlinear equations in order 
to verify that they are indeed solutions of the original 
problem. Expressions for the discontinuities across the 
left-hand cut are contained in the Appendix. 

Before we discuss the results of the calculations, let 
us examine the third-order "potentials." The quantities 
of interest are the imaginary parts, for negative v, of 
the partial-wave scattering amplitudes3'4 fiz(v), where / 
denotes the angular momentum (zero or one) and I the 
isotopic spin. The second- and third-order contributions 
are plotted in Fig. 2 with X set equal to unity. 

The first thing to be noticed about the third-order 
contributions is that they have a qualitatively different 
behavior from the second-order terms. The second-order 
imaginary parts never change sign as their argument is 
varied. This has the mathematical consequence that 
the fiT calculated from them belong to the class of 
Herglotz functions—an important point if one wishes 
to discuss the uniqueness of the solutions.5 This is no 
longer true in third order where the corresponding 
(third-order) potentials have a complicated structure 
in that they are attractive at some distances and 
repulsive at others. 

2 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). 
3 The kinship between the imaginary part of the amplitude for 

negative energy and the potential of a Schrodinger equation is 
discussed by G. F. Chew, S-Matrix Theory of Strong Interactions 
(W. A. Benjamin, Inc., New York, 1961), p. 31. 

4 Our fi(y) are defined to be [(v+l)/v]lh exp(i8i) sinSj. 
5 We refer to the C.D.D. ambiguity. See footnote 5 of Ref. 1. 
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FIG. 2. The imaginary parts of the partial-wave scattering 
amplitudes on the negative v axis. The dashed curves are the third-
order contributions and the solid curves the second-order ones. 
/ spins 0 and 1 are in panels a and b. The coupling constant X is 
unity. The 7 = 2 plots are quite similar to those for 1—0. 

A second point, one of considerable importance, may 
be made by observing that the value of \v\ at which 
the third-order contributions become important are 
larger than those for the second-order quantities. Thus, 
it is correct to say that the higher order calculation 
gives a betterjestimate of the singularities (of the fi1) 
more distant from the physical region (for X not too 
large). We expect that the more distant singularities 
will have their most important effect upon the higher 
energy parts of the scattering amplitudes. Hence, it 
appears that the convergence condition discussed in 
the preceding section has a chance of being satisfied. It 
should also be noticed in this connection that the 
modification of the P-wave imaginary part at moderate 
values of \v\ (a few pion masses) is relatively much 
greater than the modification of the S waves. 

III. RESULTS 

We solved the N/D equations for the two 5-wave 
(7=0,2) amplitudes and the P-wave (1=1) amplitude 
on Argonne's IBM-704 computer using a modification 
of a program previously written by K. Smith.1 Solutions 
were obtained for values of X between ±0.5. The 5-wave 
solutions were found to have "ghost" singularities at 
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FIG." 3. Scattering 
lengths. Solid curves 
represent the results 
of the second-order 
calculations (from 
paper I) and dashed 
curves those from 
the present calcu
lation. The 1=2 
curves are not suffi
ciently different to 
warrant showing. 

negative energy at about the same position as in the 
second-order calculation (see paper I). The position of 
the ghost was far enough from the physical region that 
one could consider the N/D solutions to be meaningful 
provided that |X| was less than about 0.3. In this 
respect there was no essential change from the results 
of paper I. 

The behavior of the S-wave scattering lengths 
(Fig. 3) are very readily understood in terms of ele
mentary potential-scattering arguments. In the second-
order calculations of paper I, the results of which are 
also reproduced in Fig. 3, it was found that an 7=0 
bound state was predicted6 for some X greater than 
about 0.4. On the other hand, the addition of the third-
order potential would be expected to result in a slight 
shift of the value of X at which the bound state occurs. 
Since the scattering length is infinite if there is a zero-
energy bound state, it is clear that a slight X-dependent 
shift in the position of the infinity will give a substantial 
modification of those scattering lengths near the pre
dicted bound state. For values of X far from the bound-
state value, however, the third-order corrections give 
little change. The 1=2 scattering lengths are less 
modified by the third-order corrections because the 
potential is far from being attractive enough (for our 
range of X) to bind the two mesons. It is quite clear, 
then, that the third-order corrections have only a small 
effect upon the 5-wave scattering, and our perturbation 
procedure is, so far, eminently reasonable for the range 
of X's that are considered meaningful. 

The antics of the P-wave amplitude when the third-
order corrections are included are considerably more 
interesting. It will be recalled that the second-order 
P-wave potential is a purely attractive one regardless 
of the sign of X. The third-order correction, which is 
only important at short ranges for not too large values 
of |X|, is attractive for negative X (repulsive S wave) 
and repulsive for positive X. These properties are some
what apparent in the dependence (Fig. 3) of the P-wave 
"scattering length" (denned as the limit of tanS/?3) 
upon the coupling constant. For example, the third-
order potential is sufficiently attractive to give a P-wave 
bound state when X is about —0.45. The second-order 

potential could not do this until |X| reached the 
magnitude of about 1.7. 

We are, of course, free to ignore the ghost difficulties 
in the 5-wave amplitudes and increase the magnitude 
of —X to "force" the onset of a P-wave resonance. One 
then sees another consequence of the added inner 
attraction of the third-order term in Fig. 4. In this figure 
we plot [V/(H-1)]1/2 cot5 for the value of X at which 
the phase shift just touches 90° at finite energy in the 
third-order calculation. The corresponding quantity for 
the second-order calculation is also depicted for com
parison. We see that in third order the energy at which 
the resonance can first occur has increased by a sizeable 
amount over what it was before. To summarize, then, 
the effect of the third-order "potential" is to produce 
the P-wave resonances at higher energies with smaller 
coupling constants. If one happens to be interested in 
producing a narrow resonance near v=6, the prospects 
for doing this in fourth order would seem to be 
favorable. 

IV. CROSSING SYMMETRY 

Just as in I, we now ask whether we have maintained 
an approximate crossing symmetry in the course of the 
third-order calculation. We do this by taking the S- and 
P-wave solutions that have been obtained and using 
them to calculate a new approximation for the imagi
nary part of the fi1 on the left-hand cut in the v plane. 
This imaginary part should not be very different from 
the perturbation expression for the left-hand cut, 
provided that — v is small enough so that the partial-
wave expansion converges rapidly. We recall that the 
partial-wave expansion does not converge at all if — v 
is greater than 9. 

The comparison for a moderate value of X is shown 
in Fig. 5. We note that the agreement over a range of 
about two pion masses from threshold is, in fact, very 
good. We also remark that the general trend of agree
ment is much better in the third-order calculation than 
in the second-order one. 

V. CONCLUSIONS 

In brief summary, the effects of including the third-
order contributions to the "potential" are: (1) No 
appreciable change in the S-wave amplitudes over a 
large energy range, except near the values of X for 

6 This is a somewhat liberal interpretation of the fact that the 
scattering length becomes infinite at this value of X. The difficulty 
is that a "ghost" pole has moved very close to the physical region 
so that the solution cannot be taken seriously near X=0.4. 
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FIG. 4. "Onset" of 
the P-wave reso
nance in second 
(solid) and third 
(dashed) order. 
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FIG. 5. Comparison of imaginary parts of the fi1 on the left-
hand cut as calculated by third-order perturbation theory (dashed) 
and by crossing symmetry (solid). 

which a zero-energy bound state is predicted. (2) A 
substantial change in the P-wave amplitude,7 especially 
in the moderate to high-energy range. (3) An attractive 
P-wave potential when the 5-wave potential is repul
sive, and vice versa. Here we refer to the behavior of 
the P-wave amplitude a pion mass, or so, above thresh
old. The scattering length tends to remain positive 
(attractive) for both signs of X (Fig. 3). (4) A P-wave 
resonance can be obtained at higher energies and for 
smaller coupling constants than in the second-order 
calculation. The coupling constant needed is, however, 
still too large to give believable 5-wave amplitudes. 

It would appear reasonable to conclude, on the basis 
of our results, that the kind of perturbation theory that 
is being used is eminently reasonable. Further, there 
seems to be good reason to hope that a fourth-order 
calculation will reproduce the most important experi
mental feature of pion-pion scattering, namely, the 
p resonance. 

APPENDIX 

The N and D equations are identical to those of 
Appendix B of paper I, except that the D equations are 
modified by including the third-order imaginary parts. 
We also give the second-order imaginary parts in order 

7 It should be noted that our results are in qualitative agreement 
with those of M. Baker and F. Zachariasen, Phys. Rev. 118, 1659 
(1960). They carried out a third-order calculation using Baker's 
determinantal method. 

to facilitate comparison. It is, of course, required that 

In second order, then, 

ImAoI(+p)=Pi\*(v+l/py'*Zl+h(+v)/2l, (Al) 

Im^1
,(+^) = - 5 X 2 ^ + l A ) 1 / 2 r i - - l + - - ^ ( + ^ ) l ^ 1 , 

where 

*-Qfor K) 
(A2) 

(A3) 

and 
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The third-order terms may be written 

'̂w= '̂-MiH~4)]l •(A5) 

where £2 is the function dilog,8 and 

Sz=Tz+Ui+Vi-kila\4v\, 

^r=CH^+l)]1 / 2C^-r-5r/(4,)], 

Ti=dz-ezv-8z/(4v), 
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The above formulas (A5)-(A8) were checked against 
the imaginary parts of the perturbation amplitudes 
given by Baker and Zachariassen7; no discrepancies 
were found. 

8 L . Lewin, DUogarithms and Associated Functions (McDonald 
and Sons, Ltd., London, 1958). 


